

Open-Domain Aspect-Opinion Co-Mining with Double-Layer Span Extraction

Mohna Chakraborty* Iowa State University Ames, Iowa, USA Adithya Kulkarni* Iowa State University Ames, Iowa, USA Qi Li Iowa State University Ames, Iowa, USA

KDD-2022

code:

Reported by Dongdong Hu

Introduction

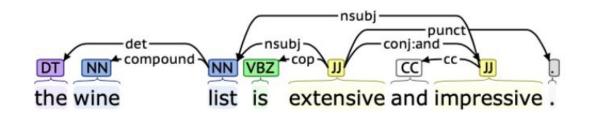


Figure 2: An example of Dependency parse tree

The supervised extraction methods achieve state-of-the-art performance but require large-scale humanannotated training data. Thus, they are restricted for open-domain tasks due to the lack of training data.

 \mathcal{D}

$$R = \{w_1, w_2, ..., w_k\}$$
$$A = \{A_1, A_2, ..., A_i\}$$

 $O = \{O_1, O_2, ..., O_j\}$

 $P = \{(A_i, O_j), ..\}$

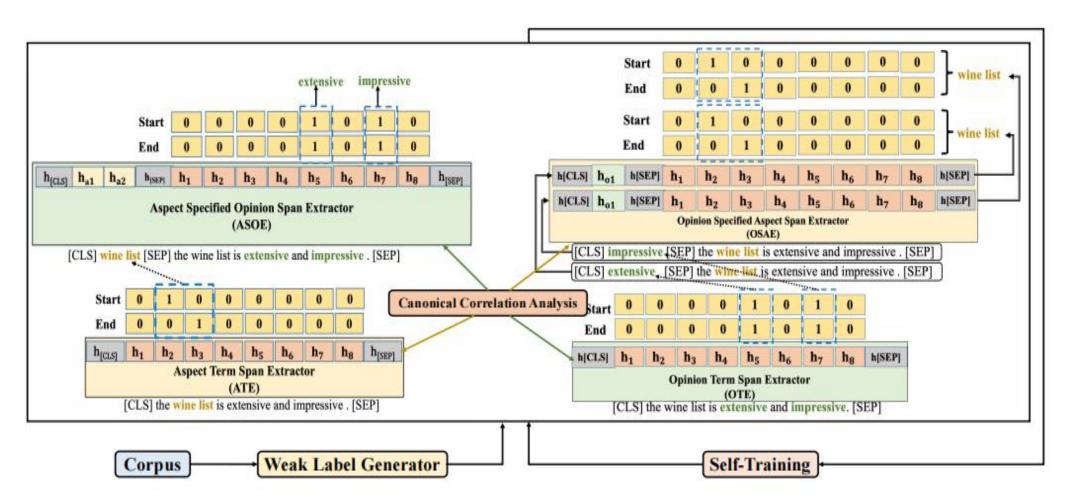


Figure 1: ODAO architecture

Method

Weak Label Generation

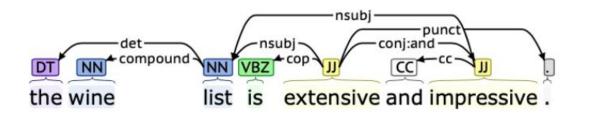


Figure 2: An example of Dependency parse tree

 $AspectTerm = NN \leftarrow nsubj \leftarrow JJ(root) = OpinionTerm.$

(1)
$$AT = NN^* \leftarrow nsubj \leftarrow JJ^*(root) = OP$$

(2) $OP = JJ^* \leftarrow comp \leftarrow OP$
(3) $AT = NN^* \leftarrow conj \leftarrow AT$
(4) $OP = JJ^* \leftarrow conj \leftarrow OP$
(5) $AT = NN^* \leftarrow comp \leftarrow AT$

Method

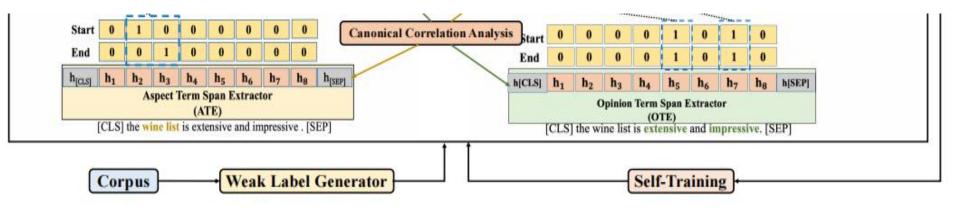
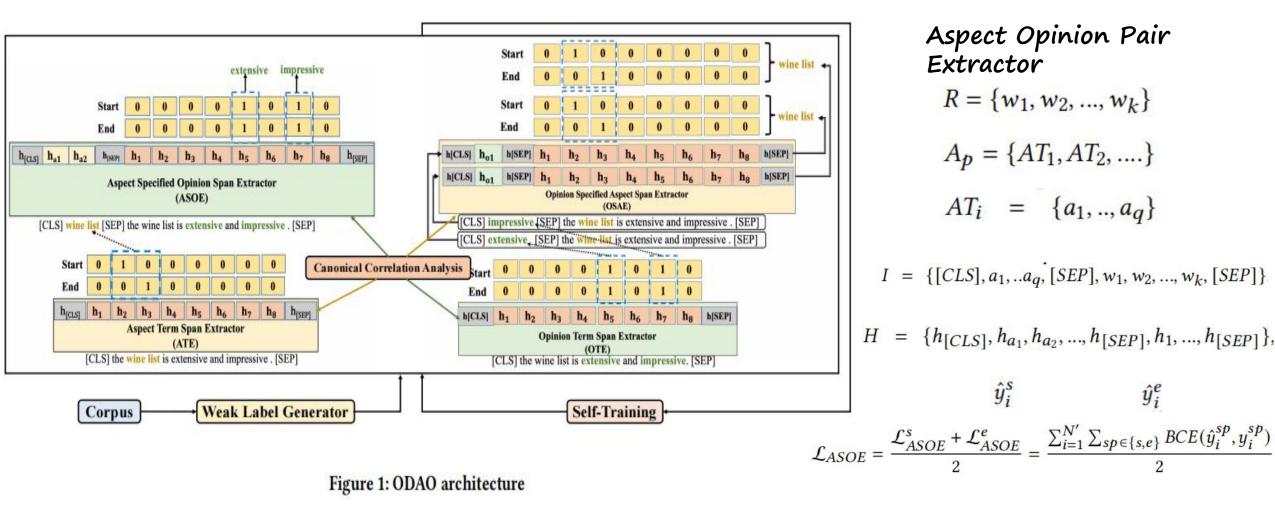
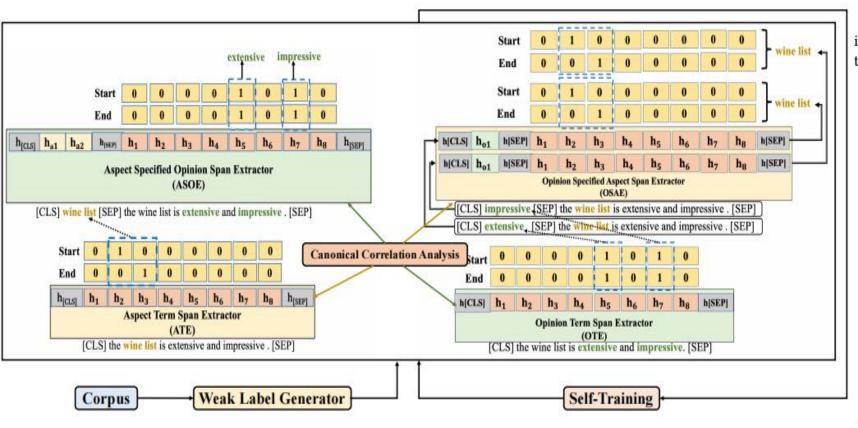



Figure 1: ODAO architecture

Aspect/Opinion Term Extractor	$y_i = h_i * \mathcal{W}^T + b,$	$\hat{y}_i^s = \begin{cases} 1 \\ 0 \end{cases}$, if $h_{i_s} > 0;$, else.
$R = \{w_1, w_2,, w_k\}$	$h_{i_s} = y_i[0],$ $h_{i_e} = y_i[1],$	(, else. , if $h_{i_e} > 0$; , else.
$H = \{h_{[CLS]}, h_1, h_2, \dots, h_{[SEP]}\} \text{ where } y_i \in$	$\mathbb{R}^2, \mathcal{W} \in \mathbb{R}^{2*d_h}, \text{ and } b \in \mathbb{R}^2,$	57 (0	, else.
\mathcal{W} and b are init	ialized randomly from $\mathcal{U}(-\sqrt{f},\sqrt{f})$, where f	$=\frac{1}{d_h}$	



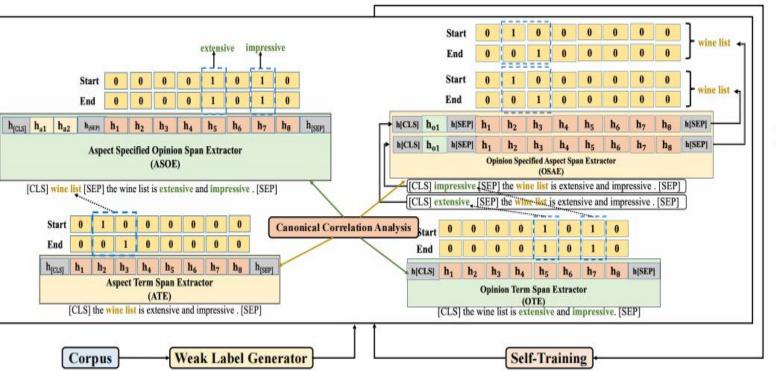
 $\mathcal{L} = \mathcal{L}_{ATE} + \mathcal{L}_{OTE} + \mathcal{L}_{ASOE} + \mathcal{L}_{OSAE}.$

Early

Stopping_{The weakly labeled training data $\mathcal{D}'_{labeled}$ is biased and noisy. Motivated by [15], we employ early stopping to prevent the model from over-fitting to the label noise.}

$$o_1 = corr(u^{\intercal}H_{ATE}, v^{\intercal}H_{OSAE}).$$

 $(u', v') = \underset{u,v}{\operatorname{argmax}} \operatorname{corr}(u^{\mathsf{T}} H_{ATE}, v^{\mathsf{T}} H_{OSAE}),$


$$\rho_{1} = \frac{u^{\mathsf{T}} \sum_{AO} v}{\sqrt{(u^{\mathsf{T}} \sum_{AA} u)(v^{\mathsf{T}} \sum_{OO} v)}}.$$
$$\rho = \frac{\sum_{M} (\rho_{1} + \rho_{2})}{M},$$

where *M* refers to the number of reviews in the weakly labeled train set $\mathcal{D}'_{labeled}$.

Figure 1: ODAO architecture

Figure 1: ODAO architecture

Self-Training

The weakly labeled train set $\mathcal{D}'_{labeled}$ constrains the proposed model performance due to the low coverage of the weak label generator rules. Furthermore, the bias in $\mathcal{D}'_{labeled}$ can also influence model training.

$$\gamma_R = A'_{ATE} \Delta A'_{OSAE} + O'_{OTE} \Delta O'_{ASOE}, \tag{9}$$

where $A\Delta B = (A - B) \bigcup (B - A)$ is the symmetric difference of two sets. All the modules agree on the predictions for a review *R* if $|\gamma_R| = 0$, and such reviews are considered to be correctly predicted.

Table 2: Statistics of the Datasets

Table 3: Statistics of Fan et al. [7] datasets

Datasets	S ₁	4 <i>l</i>	S ₁	4 <i>r</i>	S1	5 r	S10	sr
	Train	Test	Train	Test	Train	Test	Train	Test
#sentences	3045	800	3041	800	1315	685	2000	676
#aspects	2359	653	3693	1134	1205	542	1757	622
#opinions	2500	677	3512	1014	1217	516	1381	475

Datasets	S1.	$_4l$	S ₁₄	1 <i>r</i>	S19	5 <i>r</i>	S1	sr
	Train	Test	Train	Test	Train	Test	Train	Test
#sentences	1158	343	1627	500	754	325	1079	329
#pairs	1634	482	2643	865	1076	436	1512	457

Table 4: Results of *ATE* task from *ATE* module on SemEval dataset. We report the span-level *F*₁ scores on the test sets. Results of the baselines are reported from their original papers. - refers to unpublished results as of the date of writing (Feb. 2022).

Method	Human Effort	$S_{14}l$	$S_{14}r$	$S_{15}r$	S ₁₆ r	
RINANTE		80.16	86.45	69.90	1220	
QDSL		84.27	87.85	77.72	83.34	
PSTD	Gold Annotation	86.91	88.75	75.82	82.56	
DeepWMaxSat	and a second	81.33	85.33	-	73.67	
FS-ODAO		85.93	88.77	83.39	86.15	
ABAE	None	32.9	40.2			
LCC+GBC	INOR	36.1	41.2			
GMTCMLA	Sample Annotation	56.08	76.51	61.75	-	
AutoNER	Dictionary	65.44	-	- 8 1 -1	140	
DP	Dula Davieu	19.19	38.72	27.32	120	
ODAO	Rule Design	76.14	80.73	80.72	79.24	

Table 5: Results of OTE task from OTE module on SemEval dataset. We report the span-level F_1 scores on the test sets. Results of the baselines are reported from their original papers. - refers to unpublished results as of the date of writing (Feb. 2022).

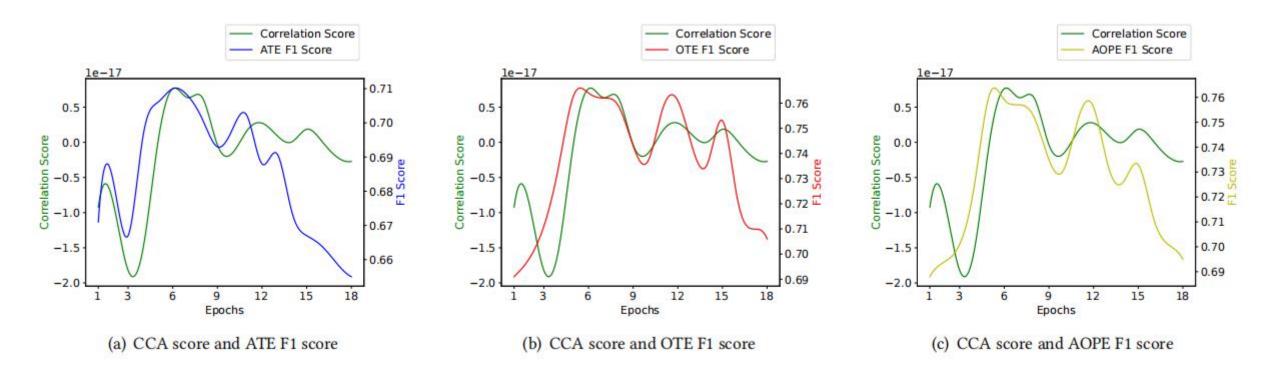
Method	Human Effort	$S_{14}l$	$S_{14}r$	\$15r	\$16r
RINANTE		81.96	85.67	72.09	
DeepWMaxSat	Cold Annotation	80.34	85.73		79.67
DeepLogic	Gold Annotation	79.32	84.37	-	78.89
FS-ODAO		85.47	87.23	84.56	88.43
GMTCMLA	Sample Annotation	67.10	78.70	64.37	
DP	Dula Dasign	55.29	65.94	46.31	
ODAO	ODAO Rule Design		79.57	82.56	81.26

Table 6: Results of AOPE task from ASOE and OSAE module on SemEval dataset. We report the span-level F_1 scores on the test sets. Results of the baselines are reported from their original papers. - refers to unpublished results as of the date of writing (Feb. 2022).

Method	Human Effort	$S_{14}l$	$S_{14}r$	S ₁₅ r	$S_{16}r$
QDSL		70.20	78.05	71.22	77.28
SDRN		67.13	76.48	70.94	-
SpanMlt	Gold Annotation	68.66	75.60	64.48	71.78
FS-ODAO		90.04	89.89	87.18	90.06
ODAO	Rule Design	81.75	83.02	83.93	81.41

Table 7: Ablation Study results showing F_1 score for span-level ATE task from ATE module on SemEval dataset.

Methods	$S_{14}l$	\$14r	\$15 <i>r</i>	$S_{16}r$
ODAO	76.14	80.73	80.72	79.24
-Pair Extraction Modules	50.13	57.53	60.86	60.71
-Self Training	62.06	72.19	72.13	71.0


Table 8: Ablation Study results showing F1 score forspan-level OTE task from OTE module on SemEval dataset.

Methods	$S_{14}l$	S ₁₄ r	\$15r	$S_{16}r$
ODAO	77.82	79.57	82.56	81.26
-Pair Extraction Modules	72.75	75.63	78.45	77.56
-Self Training	73.30	76.70	77.37	76.3

Table 9: Ablation Study results showing F₁ score for span-level AOPE task combining ASOE and OSAE module on SemEval dataset.

Methods	$S_{14}l$	S ₁₄ r	$S_{15}r$	S ₁₆ r
ODAO	81.75	83.02	83.93	81.41
-Self Training	70.64	76.21	76.65	76.09

Figure 3: CCA score and model performance on different tasks

Table 10: Case study of reviews with complex aspect-opinion relation

Review	Model Predictions	Ground Truth
i recommend the black roasted codfish,	ATE: [black roasted codfish, dish], OTE:	ATE: [black roasted codfish, dish], OTE: [recommend, best],
it was the best dish of the evening .	[recommend, best], AOPE: [(black roasted	AOPE: [(black roasted codfish, recommend), (dish, best)]
	codfish, recommend), (dish, best)]	
- i ca n't say enough about this place .	ATE: [place], OTE: [null], AOPE: [(null, null)]	ATE: [place], OTE: [null], AOPE: [(null, null)]
it 's fast , light , and simple to use .	ATE: [use], OTE: [fast, light, simple], AOPE:	ATE: [use], OTE: [fast, light, simple], AOPE: [(use, fast), (use,
	[(use, fast), (use, light), (use, simple)]	light), (use, simple)]
i can highly recommend their various	ATE: [saag, paneer, korma], OTE:	ATE: [saag, paneer, korma], OTE: [recommend], AOPE: [(saag,
saag and paneer and korma.	[recommend], AOPE: [(saag, recommend),	recommend), (paneer, recommend), (korma, recommend)]
CONTRACTOR CONTRACTOR	(paneer, recommend), (korma, recommend)]	

Thanks